Distributed Python

There's more...

If RabbitMQ operates under its default configuration, Celery can connect with no other
information other than amgp: //scheme.

Scientific computing with SCOOP

Scalable Concurrent Operations in Python (SCOOP) is a Python module to distribute
concurrent tasks (called Futures) on heterogeneous computational nodes. Its architecture is
based on the @MQ package, which provides a way to manage Futures between the distributed
systems. The main application of SCOOP resides in scientific computing that requires the
execution of many distributed tasks using all the computational resources available.

To distribute its futures, SCOOP uses a variation of the broker patterns:

l ‘ worker

worker

Worker origin

worker

broker

‘ ‘ o

The SCOOP architecture

worker

The central element of the communication system is the broker that interacts with all the
independent workers to dispatch messages between them. The Futures are created in the
worker elements instead of the central node (the broker) with a centralized serialization
procedure. This makes the topology architecture more reliable and makes performance better.
In fact, the broker's main workload consists of networking and interprocess |I/0 between
workers with relatively low CPU processing time.

158

Chapter 5

Getting ready

The SCOOP module is available at https://github.com/soravux/scoop/ and its
software dependencies are as follows:

» Python>=2.60r>=3.2

» Distribute >= 0.6.2 or setuptools >= 0.7

» Greenlet>=0.3.4

» pyzmg >= 13.1.0 and libzmqg >= 3.2.0

» SSH for remote execution
SCOOP can be installed on Linux, Mac, and Windows machines. Like Disco, its remote usage
requires an SSH software, and it must be enabled as a password-less authentication between
every computing node. For a complete reference about the SCOOP installation procedure, you

can read the information guide at http://scoop.readthedocs.org/en/0.7/install.
html.

On a Windows machine, you can install SCOOP simply by typing the following command:
pip install SCOOP
Otherwise, you can type the following command from SCOOP's distribution directory:

Python setup.py install

How to do it...

SCOOQP is a library full of functionality that is primarily used in scientific computing problems.
Among the methods used to find a solution to these problems that are computationally
expensive, there is the Monte Carlo algorithm. A complete discussion of this method would
take up many pages of a book, but in this example, we want to show you how to parallelize a
Monte Carlo method for the solution of the following problem, the calculation of the number ,
using the features of SCOOP. So, let's consider the following code:

import math

from random import random
from scoop import futures
from time import time

Distributed Python

def evaluate number of points in unit circle(attempts) :

points fallen in unit disk = 0
for i in range (0,attempts)
x = random()
y = random/()
radius = math.sqgrt(x*x + y*y)
#ithe test is ok if the point fall in the unit circle
if radius < 1
#if ok the number of points in a disk is increased
points fallen in unit disk = \
points fallen in unit disk + 1
return points fallen in unit disk

def pi calculus with Montecarlo Method (workers, attempts):

print ("number of workers %i - number of attempts %i"

% (workers, attempts))

bt = time()
#in this point we call scoop.futures.map function
#the evaluate number of points_in unit circle \
#function is executed in an asynchronously way
#and several call this function can be made concurrently
evaluate task = \
futures.map (evaluate points in circle,
[attempts] * workers)
taskresult= sum(evaluate task)

print ("%i points fallen in a unit disk after " \
% (Taskresult/attempts))
pivalue = (4. * Taskresult/ float (workers * attempts))
computationalTime = time() - bt
print ("value of pi = " + str(piValue))
print ("error percentage = " + \
str((((abs(pivalue - math.pi)) * 100) / math.pi)))
print ("total time: " + str(computationalTime))
if name == " main ":

160

for i in range (1,4):
#let's fix the numbers of workers...only two,
#but it could be much greater
pi calculus_with Montecarlo Method (i*1000, 1*1000)
print (" ")

Chapter 5

To run a SCOOP program, you must open Command Prompt and type the following
instructions:

python -m scoop name file.py
For our script, we'll expect output like this:
C:\Python CookBook\Chapter 5 - Distributed Python\chapter 5 -

codes>python -m scoop pi calculus with montecarlo method.py

[2015-06-01 15:16:32,685] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.3.0 (v3.3.0:bd8afb90e

bf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)], API: 1013

[2015-06-01 15:16:32,685] launcher INFO Deploying 2 worker(s) over 1
host (s) .

[2015-06-01 15:16:32,685] launcher INFO Worker d--istribution:
[2015-06-01 15:16:32,686] launcher INFO 127.0.0.1: 1 +
origin

Launching 2 worker(s) using an unknown shell.

number of workers 1000 - number of attempts 1000

785 points fallen in a unit disk after

value of pi = 3.140636

error percentage = 0.03045122952842962

total time: 10.258585929870605

number of workers 2000 - number of attempts 2000
1570 points fallen in a unit disk after

value of pi = 3.141976

error percentage = 0.012202295220195048

total time: 20.451170206069946

number of workers 3000 - number of attempts 3000
2356 points fallen in a unit disk after

value of pi = 3.1413777777777776

error percentage = 0.006839709526630775

total time: 32.3558509349823

[2015-06-01 15:17:36,894] launcher (127.0.0.1:59239) INFO Root
process is done.

[2015-06-01 15:17:36,896] launcher (127.0.0.1:59239) INFO Finished
cleaning spawned subprocesses.

Distributed Python

The correct value of pi becomes more precise as we increase the number of attempts and
workers.

@ o0 O
O

Monte Carlo evaluation of m: counting points inside the circle

The code presented in the preceding section is just one of the many implementations of
the Monte Carlo method for the calculation of . The evaluate points in circle
() function is taken randomly and then given a point of coordinates (x, ¥), and then it is
determined whether or not this point falls within the circle of the unit area.

Whenever the points fallen in unit_disk condition is verified, the variable is
incremented. When the inner loop of the function ends, it will represent the total number of
points falling within the circle. This number is sufficient to calculate the value of pi. In fact, the
probability that the point falls within the circumference is 1/ 4, that is the ratio between the
area of the unit circle, equal to m and the area of the circumscribed square equal to 4.

So, by calculating the ratio between the number of points fallen inside the disc, taskresult,
and the number of shots made, workers * attempts, you obtain an approximation of /4 and
of course, also of the number m:

pivalue = (4. * taskresult / float (workers attempts *))
The SCOOP function is as shown:
futures.map (evaluate points in circle, [attempts] * workers)

This takes care of distributing the computational load between the available workers and at
the same time, collects all the results. It executes evaluate points in circleinan
asynchronous way and makes several calls to evaluate points in circle concurrently.

162

Chapter 5

Handling map functions with SCOOP

A common task that is very useful when dealing with lists or other sequences of data is to
apply the same operation to each element of the list and then collect the result. For example,
a list update may be done in the following way from the Python IDLE:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>updated items = []

>>>for x in items:

>>> updated items.append (x*2)

>>> updated items
>>> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This is a common operation. However, Python has a built-in feature that does most of the
work.

The Python function map (aFunction, aSequence) applies a passed-in function to each
item in an iterable object and returns a list containing all the function call results. Now, the
same example would be:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>def multiplyFor2 (x) :return x*2

>>>print (list (map (multiplyFor2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Here, we passed in the map function the user-defined function multiplyFor2. Itis applied to
each item in the items list, and finally, we collect the result in a new list that is printed.

Also, we can pass in a lambda function (a function defined and called without being bound to
an identifier) as an argument instead of a function. The same example now becomes:
>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>print (list (map (lambda x:x*2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The map built-in function has performance benefits because it is faster than a manually
coded for loop.

Distributed Python

Getting ready

The SCOOP Python modules define more than one map function that allow asynchronous
computation that could be propagated to its workers. These functions are:

>

futures.map ((func, iterables, kargs): Thisreturns a generator that
iterates the results in the same order as its inputs. It can thus act as a parallel
substitute for the standard Python map () function.

futures.map as completed(func, iterables, kargs): This will yield
results as soon as they are made available.

futures. scoop.futures.mapReduce (mapFunc, reductionOp,
iterables, kargs): This allows us to parallelize a reduction function after we
apply the map () function. It returns a single element.

How to do it...

In this example, we'll compare the MapReduce version of SCOOP with its serial
implementation:

Compare SCOOP MapReduce with a serial implementation

import operator

import time

from scoop import futures

def simulateWorkload (inputData) :

def

164

time.sleep(0.01)
return sum(inputData)

CompareMapReduce () :
mapScoopTime = time.time ()
res = futures.mapReduce (
simulateWorkload,
operator.add,
list([a] * a for a in range(1000)),
)
mapScoopTime = time.time () - mapScoopTime
print ("futures.map in SCOOP executed in {0:.3f}s \
with result:{1}".format (

Chapter 5

mapScoopTime,
res

)

mapPythonTime = time.time ()
res = sum(
map (
simulateWorkload,
list([a]l] * a for a in range(1000))

)
mapPythonTime = time.time() - mapPythonTime
print ("map Python executed in: {0:.3f}s \
with result: {1}".format (
mapPythonTime,
res

)

if name == ' main ':
CompareMapReduce ()

To evaluate the script, you must type the following command:

python -m scoop map reduce.py

> [2015-06-12 20:13:25,602] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)], API: 1013

[2015-06-12 20:13:25,602] launcher INFO Deploying 2 worker(s) over 1
host (s) .

[2015-06-12 20:13:25,602] launcher INFO Worker d--istribution:
[2015-06-12 20:13:25,602] launcher INFO 127.0.0.1: 1l + origin
Launching 2 worker(s) using an unknown shell.

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

[2015-06-12 20:13:45,344] launcher (127.0.0.1:2559) INFO Root process
is donme.

[2015-06-12 20:13:45,368] launcher (127.0.0.1:2559) INFO Finished
cleaning spawned subprocesses.

Distributed Python

In this example, we compare the SCOOP implementation of the MapReduce function with
the serial implementation. The core of the script is the CompareMapReduce () function
that contains the two implementations. Also in this function, we evaluate the execution time
according to the following schema:

mapScoopTime = tme.time ()

#Run SCOOP MapReduce
mapScoopTime = time.time () - mapScoopTime
mapPythonTime = time.time ()

#Run serial MapReduce
mapPythonTime = time.time () - mapPythonTime

Then in the output, we report the resulting time:

futures.map in SCOOP executed in 8.459s with result: 332833500
map Python executed in: 10.034s with result: 332833500

To obtain the comparable execution time, we simulate a computational workload that
introduces a time.sleep statement in the simulatedWordload function:

def simulateWorkload (inputData, chose=None) :
time.sleep(0.01)
return sum(inputData)

The SCOOP implementation of mapReduce is as follows:

res = futures.mapReduce (
simulateWorkload,
operator.add,
list([a]l] * a for a in range(1000)),

)
The futures-mapReduce function has the following arguments:
» simulateWork: This will be called to execute the Futures. We also need to

remember that a callable must return a value.

» operator.add: This will be called to reduce the Futures results. However, it also
must support two parameters and return a single value.

» list (...) : This is the iterable object that will be passed to the callable object as a
separate Future.

166

Chapter 5
The serial implementation of mapReduce is, as follows:

res = sum(
map (
simulateWorkload,
list([a] * a for a in range(1000))

)

The Python standard map () function has two arguments: the simulateWorkload function
and the 1ist () iterable object. However, to reduce the result, we used the Python function
sum.

Remote Method Invocation with Pyro4

Python Remote Objects (Pyro4) is a library that resembles Java's Remote Method Invocation
(RMI), which allows you to invoke a method of a remote object (that belongs to a different
process and is potentially on a different machine) almost as if the object were local (that is,

it belonged to the same process in which it runs the invocation). In this sense, the Remote
Method Invocation technology can be traced from a conceptual point of view. The idea of a
remote procedure call (RPC) is reformulated for the object-oriented paradigm (in which, of
course, the procedures are replaced by methods). The use of a mechanism for remote method
invocation in an object-oriented system entails the significant advantages of uniformity and
symmetry in the project, since it allows us to model the interactions between distributed
processes using the same conceptual tool that is used to represent the interactions between
the different objects of an application or the method call.

Application
/ \
Client Server
I I
Stubs Skeletons
v v
Remote Reference Layer (RRL) RMI System
v v
Transport Transport
\ Network /

Remote Method Invocation

